QUESTION BANK (DESCRIPTIVE)

Subject with Code : BASIC ELECTRICAL \& ELECTRONICS ENGINEERING(23EE0201)
Course \& Branch: B. Tech -Common to all
Year \& Semester: I - B. Tech. \& I-Semester
Regulation:R23

PART A: BASIC ELECTRICAL ENGINEERING

UNIT -I
DC AND AC CIRCUITS

1.	What are the passive elements?	$[\mathbf{L 1}][\mathbf{C O 1}][\mathbf{1 M}]$
2.	State ohm's law.	$[\mathbf{L 1}][\mathbf{C O 1}][\mathbf{1 M}]$
3.	State Kirchoff's laws.	$[\mathbf{L 1}][\mathbf{C O 1}][\mathbf{1 M}]$
4.	Define Active Power.	$[\mathbf{L 1}][\mathbf{C O 1}][\mathbf{1 M}]$
5.	Define Impedance.	$[\mathbf{L 1}][\mathbf{C O 1}][\mathbf{1 M}]$

1	a)	Explain about Electrical circuit elements.	[L2][CO4][6M]
	b)	State and Explain about the ohm's law	[L1][CO1][4M]
2	a)	State and explain Kirchhoff's laws?	[L1][CO1][5M]
	b)	Determine the current in branch A-B by using KVL	[L3][CO2][5M]
3	a)	Find equivalent resistance when three resisters are connected in parallel.	[L3][CO2][4M]
	b)	Find the equivalent resistance for the circuit shown below.	[L3][CO2][6M]

UNIT -II

MACHINES AND MEASURING INSTRUMENTS

1.	Define Faradays law.	$[\mathbf{L 1}][\mathbf{C O 2}][\mathbf{1 M}]$
2.	List any Five parts of a Transformer.	$[\mathbf{L 1}][\mathbf{C O 2}][\mathbf{1 M}]$
3.	Write any three applications of a DC Motor.	$[\mathbf{L 1}][\mathbf{C O 2}][\mathbf{1 M}]$
4.	Which instrument is used to measure the DC quantity?	$[\mathbf{L 1}][\mathbf{C O 2}][\mathbf{1 M}]$
5.	What are The types of MI instruments?	$[\mathbf{L 1}][\mathbf{C O 2}][\mathbf{1 M}]$

1		Draw and explain the construction of dc machine	[L4][CO2][10M]
2		Explain about the Working principle of a DC generator..	[L2][CO1][10M]
3		What is the working principle of dc motor? explain clearly	[L1][CO1][10M]
4		Draw and Explain the constructional diagram of a single phase transformer.	[L4][CO2][10M]
5		Explain the Working principle of single phase transformer.	[L2][CO1][10M]
6		Draw and Explain the constructional diagram of a three phase Induction motor.	[L4][CO2][10M]
7		Explain Working Principle of 3-Ø Induction Motor in detail.	[L2][CO1][10M]
8		Explain construction and Working Principle of 3-Ø Alternator	[L2][CO1][10M]
9		Explain construction and operating principle of Permanent Magnet Moving Coil (PMMC) instruments.	[L2][CO2][10M]
10	a)	Explain the operating principles of Moving Iron instruments	[L2][CO1][5M]
	b)	Determine the unknown resistance using Wheatstone bridge	[L3][CO3][5M]

UNIT -III

ENERGY RESOURCES, ELECTRICITY BILL \& SAFETY MEASURES

1.	What are the Conventional Energy sources?	$[\mathbf{L 1}][\mathbf{C O 3}][\mathbf{1 M}]$
2.	What is the power rating of Air Conditioner and Fan?	$[\mathbf{L 1}][\mathbf{C O}][\mathbf{1 M}]$
3.	Define unit of Electrical Energy.	$[\mathbf{L 1}][\mathbf{C O 3}][\mathbf{1 M}]$
4.	What are the different types of Earthing?	$[\mathbf{L 1}][\mathbf{C O}][\mathbf{1 M}]$
5.	What is the function of Fuse?	$[\mathbf{L 1}][\mathbf{C O 3}][\mathbf{1 M}]$

$\mathbf{1}$		Explain the Layout and operation of Hydel power generating station	$[\mathbf{L 2}][\mathbf{C O 3}[\mathbf{1 0 M}]$
2		How does a nuclear plant work ? Explain with neat sketch	$[\mathbf{L 3}][\mathbf{C O 3}][\mathbf{1 0 M}]$

3		What is solar power plant? Explain the operation with layout	[L1][CO3][10M]
4		Explain Layout and operation of Wind power generating station	[L2][CO3][10M]
5		Explain the Power ratings of household appliances	[L2][CO3][10M]
6		Define unit of electrical energy and explain the two-part tariff	[L1][CO3][5M]
7		Explain the calculation of electricity bill for domestic consumers	[L2][CO3][10M]
8	a)	What are the working principles of fuse and MCB?	[L1][CO1[4M]
	b)	Define Earthing and explain the types of earthing	[L1][CO4][6M]
9	a)	What are the functions of electric fuse?	[L1][CO4][5M]
	b)	What is an electric shock? How to prevent electric shock at home?	[L1][CO4]5M]
10	a)	What is pipe earthing? explain briefly	[L1][CO4][5M]
	b)	What are the advantages of earthing?	[L1][CO4][5M]

PART B: BASIC ELECTRONICS ENGINEERING

UNIT -I

SEMICONDUCTOR DEVICES

1.	What are conductors?	$[\mathbf{L 4}][\mathbf{C O 1}][\mathbf{1 M}]$
2.	What is meant by semiconductor?	$[\mathbf{L 4}][\mathbf{C O 1}][\mathbf{1 M}]$
3.	Define doping	$[\mathbf{L 1}][\mathbf{C O 1}][\mathbf{1 M}]$
4.	How PN diode is formed?	$[\mathbf{L 1}][\mathbf{C O 1}][\mathbf{1 M}]$
5.	Define biasing.	$[\mathbf{L 1}][\mathbf{C O 1}][\mathbf{1 M}]$

1 ,		What is a list of key milestones in the evolution of electronics from vacuum tubes to nanoelectronics and their impact on technology?	[L4][CO1][10M]
2.		Explain the operation of pn junction diode under forward bias and reverse bias conditions with the help of V-I characteristics curve.	[L5][CO1][10M]
3.	a	Define Zener diode and its characteristics	[L1][CO1][5M]
	b	What is Zener effect?	[L1][CO1][5M]
4.		Distinguish between PN Junction diode and Zener diode	[L3][CO1][10M]
5.		With the neat sketch ,Explain the operation of an NPN transistor and PNP transistor.	[L3][CO2][10M]
6.		what are the three transistor configuration ? compare the	[L4][CO2][10M]

| | characteristics of three configuration | |
| :--- | :--- | :--- | :--- |
| 7. | With a neat sketch Explain the input and output and current gain
 characteristics of a transistor in common base (CB) configuration | [L1][CO2][10M] |
| 8. | With a neat sketch Explain the input and output and current gain
 characteristics of a transistor in common Emitter (CE)
 configuration. | $[\mathbf{L 1}][\mathbf{C O 2}][\mathbf{1 0 M}]$ |
| 9. | With a neat sketch Explain the input and output and current gain
 characteristics of a transistor in common Collector (CC)
 configuration. | $[\mathbf{L 1] [\mathbf { C O 2 }] [1 0 M]}$ |
| 10 | Briefly explain the operation of a small signal CE amplifier. | $[\mathbf{L 2}][\mathbf{C O 2}][\mathbf{1 0 M}]$ |

UNIT-II
 BASIC ELECTRONIC CIRCUITS AND INSTRUMENTATION

1.	What is the necessary of the coupling capacitor?	$[\mathbf{L 4}][\mathbf{C O 2}][\mathbf{1 M}]$
2.	Define amplifier.	$[\mathbf{L 4}][\mathbf{C O 2}][\mathbf{1 M}]$
3.	What is an emitter?	$[\mathbf{L 1}][\mathbf{C O 2}][\mathbf{1 M}]$
4.	What is a step-down transformer?	$[\mathbf{L 3}][\mathbf{C O 2}][\mathbf{1 M}]$
5.	The transducer used for?	$[\mathbf{L 1}][\mathbf{C O 2}][\mathbf{1 M}]$

1	Explain the Block diagram description of a dc power supply with a detailed explanation of all blocks.	[L1][CO2][10M]
2	Explain briefly about the following: I. A step down transformer II. A rectifier III. A DC filter IV. A regulator	[L1][CO2][10M]
3	Explain the working of a full wave bridge rectifier with a neat diagram with wave forms.	[L1][CO2][10M]
4	With the help of a neat diagram explain the operations of positive and negative half cycles.	[L3][CO2][10M]
5	What is a Capacitor Filter? How the Capacitor Filteracts as a Full Wave Rectifier?	[L1][CO2][10M]
6	What is a Voltage Regulator? How the Zener Diode works as a Voltage Regulator?	[L1][CO2][10M]
7	Draw the block diagram of Public Addressing System and explain the function of each block.	[L3][CO2][10M]
8	What is an Amplifier? What is a Common Emitter Amplifier?	[L1][CO2][10M]
9	Draw the block diagram of Electronic Instrumentation System and explain the function of each block.	[L1][CO2][10M]

UNIT -III

DIGITAL ELECTRONICS

1.	What is an Excess3 code?	$[\mathrm{L} 1][\mathrm{CO} 3][1 \mathrm{M}]$
2.	List the names of universal gates with symbols	$[\mathrm{L} 4][\mathrm{CO} 3][1 \mathrm{M}]$
3.	What is hamming code?	$[\mathrm{LL}][\mathrm{CO} 3][1 \mathrm{M}]$
4.	Write the names of basic logical operators.	$[\mathrm{L} 3][\mathrm{CO} 4][1 \mathrm{M}]$
5.	What are the basic properties of Boolean algebra?	$[\mathrm{L} 1][\mathrm{CO} 4][1 \mathrm{M}]$

1	a)	What is number system? explain the different types of number systems	[L2][CO3][5M]
	b)	Convert the (555) ${ }_{10}$ into binary, octal and Hexadecimal number systems.	[L1][CO3][5M]
2		Convert the following into binary to decimal, decimal into hexa decimal i) $(1101.1)_{2}$ ii) $(1100.001)_{2}$ iii) $(5386.34)_{10}$ iv) $(214.35)_{10}$	[L1][CO3][10M]
3		Explain about Logic gates with symbols and truth table.	[L1][CO3][10M]
4	a)	What is BCD codes and what are the various BCD codes	[L3][CO3][4M]
	b)	Perform the following Decimal addition to 8421 BCD code. i) $48+58$, ii) $186+237$	[L3][CO3][6M]
5	a)	Convert the following into Gray code. i) $(1001100)_{2}$ ii) $(110101110)_{2}$	[L3][CO3][5M]
	b)	What is Hamming code and how does it work?	[L2][CO3][5M]
6		Encode the binary word 1011 into seven bit even parity hamming code?	[L1] [CO3] [10M]
7		Explain Basic Theorems and properties of Boolean Algebra	[L1][CO3[10M]
8		Define combinational circuit? Explain Half Adder and Full Adder with truth table.	[L2][CO3][10M]
9		Define sequential circuit. And explain about Flip flops, registers, and counters.	[L4][CO3][10M]
10	a)	Explain differences between combinational and sequential circuits.	[L4][CO3][5M]
	b)	Perform the following addition using excess-3 code i) $386+756$ ii) $12+38$	[L4][CO3][5M]

Prepared by: Dr.M.Priya, Ms. V.Supriya,Ms. V. Mamatha,

Mr. P.Munisekhar,Mr.Subham Kumar,Mr.R.S. Sai Praveen Kumar

